Latvian | Russian
   
SPSS ilustrēta apmācība
Literatūra par SPSS
Lejupielādēt SPSS

PSPP

LimeSurvey survey application

Nepieciešamais fails:
 

Statistisko skalu tipi


5.2. Типы статистических шкал

В эмпирическом исследовании могут встречаться, к примеру, следующие переменные (указано их наиболее вероятное кодирование):

Пол 1 = мужской
2 = женский
Семейное положение 1 = холост/не замужем
2 = женат/замужем
3 = вдовец/вдова
4 = разведен(а)
Курение 1 = некурящий
2 = изредка курящий
3 = интенсивно курящий
4 = очень интенсивно курящий
Месячный доход 1 = до 3000 DM
2 = 3001 - 5000 DM
3 = более 5000 DM
Коэффициент интеллекта (I.Q.)
Возраст (лет)

Рассмотрим сначала графу "Пол". Мы видим, что назначение соответствия цифр 1 и 2 обоим полам абсолютно произвольно, их можно было поменять местами или обозначить другими цифрами. Мы, конечно, не имеем в виду, что женщины стоят на ступеньку ниже мужчин, или мужчины значат меньше, чем женщины. Следовательно, отдельным числам не соответствует никакою эмпирического значения. В этом случае говорят о переменных, относящихся к номинальной шкале. В нашем примере рассматривается переменная с номинальной шкалой, имеющая две категории. Такая переменная имеет еще одно название - дихотомическая.

Такая же ситуация и с переменной "Семейное положение". Здесь также соответствие - между числами и категориями семейного положения не имеет никакого эмпирического значения. Но в отличии от Пола, эта переменная не является дихотомической — у нее четыре категории вместо двух. Возможности обработки переменных, относящихся к номинальной шкале очень ограничены. Собственно говоря, можно провести только частотный анализ таких переменных. К примеру, расчет среднего значения для переменной Семейное положение, совершенно бессмысленен. Переменные, относящиеся к номинальной шкале часто используются для группировки, с помощью которых совокупная выборка разбивается по категориям этих переменных. В частичных выборках проводятся одинаковые статистические тесты, результаты которых затем сравниваются друг с другом.

В качестве следующего примера рассмотрим переменную "Курение". Здесь кодовым цифрам присваивается эмпирическое значение в том порядке, в котором они расположены в списке. Переменная Курение, в итоге, сортирована в порядке значимости снизу вверх: умеренный курильщик курит больше, нежели некурящий, а сильно курящий — больше, чем умеренный курильщик и т.д. Такие переменные, для которых используются численные значения, соответствующие постепенному изменению эмпирической значимости, относятся к порядковой шкале.

Однако эмпирическая значимость этих переменных не зависит от разницы между соседними численными значениями. Так, несмотря на то, что разница между значениями кодовых чисел для некурящего и изредка курящего и изредка курящего и интенсивно курящего в обоих случаях равна единице, нельзя утверждать, что фактическое различие между некурящим и изредка курящим и между изредка курящим и интенсивно курящим одинаково. Для этого данные понятия слишком расплывчаты.

К классическими примерами переменных с порядковой шкалой относятся также переменные, полученные в результате объединения величин в классы, как "Месячный доход" в нашем примере.

Кроме частотного анализа, переменные с порядковой шкалой допускают также вычисление определенных статистических характеристик, таких как медианы. В некоторых случаях возможно вычисление среднего значения. Если должна быть установлена связь (корреляция) с другими переменными такого рода, для этой цели можно использовать коэффициент ранговой корреляции.

Для сравнения различных выборок переменных, относящихся к порядковой шкале, могут применяться непараметрические тесты, формулы которых оперируют рангами.

Рассмотрим теперь "Коэффициент интеллекта (IQ)". Не только его абсолютные значения отображают порядковое отношение между респондентами, но и разница между двумя значениями также имеет эмпирическую значимость. Например, если у Ганса IQ равен 80, у Фрица — 120 и у Отто — 160, можно сказать, что Фриц в сравнении с Гансом настолько же интеллектуальнее насколько Отто в сравнении с Фрицем (а именно — на 40 единиц IQ). Однако, основываясь только на том, что значение IQ у Ганса в два раза меньше, чем у Отто, исходя из определения IQ нельзя сделать вывод, что Отто вдвое умнее Ганса.

Такие переменные, у которых разность (интервал) между двумя значениями имеет эмпирическую значимость, относятся к интервальной шкале. Они могут обрабатываться любыми статистическим методами без ограничений. Так, к примеру, среднее значение является полноценным статистическим показателем для характеристики таких переменных.

Наконец, мы достигли наивысшей статистической шкалы, на которой эмпирическую значимость приобретает и отношение двух значений. Примером переменной, относящейся к такой шкале является "Возраст": если Максу 30 лет, а Морицу 60, можно сказать, что Мориц вдвое старше Макса. Шкала, к которой относятся данные называется шкалой отношений. К этой шкале относятся все интервальные переменные, которые имеют абсолютную нулевую точку. Поэтому переменные относящиеся к интервальной шкале, как правило, имеют и шкалу отношений.

Подводя итоги, можно сказать, что существует четыре вида статистических шкал, на которых могут сравниваться численные значения:

Статистическая шкала Эмпирическая значимость Примеры
Номинальная Нет Пол, семейное положение
Порядковая Порядок чисел Курение, месячный доход
Интервальная Разность чисел Коэффициент интеллекта (I.Q.)
Шкала отношений Отношение чисел Возраст (лет)

На практике, в том числе в SPSS, различие между переменными, относящимися к интервальной шкале и шкале отношений обычно несущественно. То есть в дальнейшем практически всегда речь будет идти о переменных, относящихся к интервальной шкале.

Пользователь SPSS должен четко разбираться в видах статистических шкал и при выборе метода обращать внимание на то, чтобы были определены надлежащие виды шкал.

Мы уже указывали, что переменные, относящиеся к номинальной шкале допускают весьма ограниченные возможности для проведения анализа. Исключение в некоторых ситуациях составляют дихотомические переменные. Для них можно, по крайней мере, определять ранговую корреляцию. Если, например, обнаруживается корреляция коэффициента интеллекта с полом, то положительный коэффициент корреляции означает, что женщины интеллектуальнее, чем мужчины. Однако если переменные, относящиеся к номинальной шкале не являются дихотомическими, вычисление коэффициентов ранговой корреляции не имеет смысла.




Top.LV Latvijas Reitingi e-TIRGUS.LV on-line.lv Izglītība Education Яндекс.Метрика
Klienti

Roche

TNS Latvija

Latvijas Pilsoniskā alianse

LU FSI

Sendigo

Prime Mail

Valodu mācību centrs
Lapas karte
www.citariga.lv || www.limesurvey.ru || www.exsobalt.lv