Latvian | Russian
   
SPSS ilustrēta apmācība
Literatūra par SPSS
Lejupielādēt SPSS

PSPP

LimeSurvey survey application

Nepieciešamais fails:
 

Hī-kvadrāta tests


Статистические критерии для таблиц сопряженности - Тест хи-квадрат

Чтобы получить статистические критерии для таблиц сопряженности, щелкните на кнопке Statistics... (Статистика) в диалоговом окне Crosstabs. Откроется диалоговое окно Crosstabs: Statistics (Таблицы сопряженности: Статистика) (см. рис. 11.9).

Диалоговое окно Crosstabs: Statistics

Рис. 11.9: Диалоговое окно Crosstabs: Statistics

Флажки в этом диалоговом окне позволяют выбрать один или несколько критериев.

  • Тест хи-квадрат (X2)

  • Корреляции

  • Меры связанности для переменных, относящихся к номинальной шкале

  • Меры связанности для переменных, относящихся к порядковой шкале

  • Меры связанности для переменных, относящихся к интервальной шкале

  • Коэффициент каппа (к)

  • Мера риска

  • Тест Мак-Немара

  • Статистики Кохрана и Мантеля-Хэнзеля

Эти критерии рассматриваются в двух последующих разделах, причем из-за того, что критерий хи-квадрат имеет большое значение в статистических вычислениях, ему посвящен отдельный раздел.

Тест хи-квадрат (X2)

При проведении теста хи-квадрат проверяется взаимная независимость двух переменных таблицы сопряженности и благодаря этому косвенно выясняется зависимость обоих переменных. Две переменные считаются взаимно независимыми, если наблюдаемые частоты (fо) в ячейках совпадают с ожидаемыми частотами (fe).

Для того, чтобы провести тест хи-квадрат с помощью SPSS, выполните следующие действия:

  • Выберите в меню команды Analyze (Анализ) ► Descriptive Statistics (Дескриптивные статистики) ► Crosstabs... (Таблицы сопряженности)

  • Кнопкой Reset (Сброс) удалите возможные настройки.

  • Перенесите переменную sex в список строк, а переменную psyche — в список столбцов.

  • Щелкните на кнопке Cells... (Ячейки). В диалоговом окне установите, кроме предлагаемого по умолчанию флажка Observed, еще флажки Expected и Standardized. Подтвердите выбор кнопкой Continue.

  • Щелкните на кнопке Statistics... (Статистика). Откроется описанное выше диалоговое окно Crosstabs: Statistics.

  • Установите флажок Chi-square (Хи-квадрат). Щелкните на кнопке Continue, а в главном диалоговом окне — на ОК.

Вы получите следующую таблицу сопряженности.

Пол * Психическое состояние Таблица сопряженности

Психическое состояние Total
Крайне неустойчивое Неустойчивое Устойчивое Очень устойчивое
Пол Женский Count 16 18 9 1 44
Expected Count 7,9 16,6 17,0 2,5 44,0
Std. Residual 2,9 ,3 -1,9 -.9
Мужской Count 3 22 32 5 62
Expected Count 11,1 23,4 24,0 3,5 62,0
Std. Residual -2,4 -,3 1,6 ,8
Total Count 19 40 41 6 106
Expected Count 19,0 40,0 41,0 6,0 106,0

Кроме того, в окне просмотра будут показаны результаты теста хи-квадрат:

Chi-Square Tests (Тесты хи-квадрат)

Value (Значение) df Asymp. Sig. (2-sided)
(Асимптотическая значимость (двусторонняя))
Pearson Chi-Square
(Хи-квадрат по Пирсону)
22,455 (а) 3 ,000
Likelihood Ratio
(Отношение правдоподобия)
23,688 3 ,000
Linear-by-Linear Association
(Зависимость линейный-линейный)
20,391 1 ,000
N of Valid Cases
(Кол-во допустимых случаев)
106

а. 2 cells (25,0%) have expected count less than 5. The minimum expected count is 2,49 (2 ячейки (25%) имеют ожидаемую частоту менее 5. Минимальная ожидаемая частота 2,49.)

Для вычисления критерия хи-квадрат применяются три различных подхода:

  • формула Пирсона;
  • поправка на правдоподобие;
  • тест Мантеля-Хэнзеля.
  • Если таблица сопряженности имеет четыре поля (таблица 2 x 2) и ожидаемая вероятность менее 5, дополнительно выполняется точный тест Фишера.

Критерий хи-квадрат по Пирсону

Обычно для вычисления критерия хи-квадрат используется формула Пирсона:

Критерий хи-квадрат по Пирсону

Здесь вычисляется сумма квадратов стандартизованных остатков по всем полям таблицы сопряженности. Поэтому поля с более высоким стандартизованным остатком вносят более весомый вклад в численное значение критерия хи-квадрат и, следовательно, — в значимый результат. Согласно правилу, приведенному в разделе 8.9, стандартизованный остаток 2 (1,96) или более указывает на значимое расхождение между наблюдаемой и ожидаемой частотами в той или ячейке таблицы.

В рассматриваемом примере формула Пирсона дает максимально значимую величину критерия хи-квадрат (р<0,0001). Если рассмотреть стандартизованные остатки в отдельных полях таблицы сопряженности, то на основе вышеприведенного правила можно сделать вывод, что эта значимость в основном определяется полями, в которых переменная psyche имеет значение "крайне неустойчивое". У женщин это значение сильно повышено, а у мужчин — понижено.

Корректность проведения теста хи-квадрат определяется двумя условиями:

  • ожидаемые частоты < 5 должны встречаться не более чем в 20% полей таблицы;
  • суммы по строкам и столбцам всегда должны быть больше нуля.

Однако в рассматриваемом примере это условие выполняется не полностью. Как указывает примечание после таблицы теста хи-квадрат, 25% полей имеют ожидаемую частоту менее 5. Однако, так как допустимый предел в 20% превышен лишь ненамного и эти поля, вследствие своего очень малого стандартизованного остатка, вносят весьма незначительную долю в величину критерия хи-квадрат, это нарушение можно считать несущественным.

Критерий хи-квадрат с поправкой на правдоподобие

Альтернативой формуле Пирсона для вычисления критерия хи-квадрат является поправка на правдоподобие:

Критерий хи-квадрат с поправкой на правдоподобие

При большом объеме выборки формула Пирсона и подправленная формула дают очень близкие результаты. В нашем примере критерий хи-квадрат с поправкой на правдоподобие составляет 23,688.

Тест Мантеля-Хэнзеля

Дополнительно в таблице сопряженности под обозначением linear-by-linear ("линейный-по-линейному") выводится значение теста Мантеля-Хэнзеля (20,391). Эта форма критерия хи-квадрат с поправкой Мантеля-Хэнзеля — еще одна мера линейной зависимости между строками и столбцами таблицы сопряженности. Она определяется как произведение коэффициента корреляции Пирсона на количество наблюдений, уменьшенное на единицу:

Тест Мантеля-Хэнзеля

Полученный таким образом критерий имеет одну степень свободы. Метод Мантеля-Хэнзеля используется всегда, когда в диалоговом окне Crosstabs: Statistics установлен флажок Chi-square. Однако для данных, относящихся к номинальной шкале, этот критерий неприменим.




Top.LV Latvijas Reitingi e-TIRGUS.LV on-line.lv Izglītība Education Яндекс.Метрика
Klienti

Roche

TNS Latvija

Latvijas Pilsoniskā alianse

LU FSI

Sendigo

Prime Mail

Valodu mācību centrs
Lapas karte
www.citariga.lv || www.limesurvey.ru || www.exsobalt.lv